The generator matrix 1 0 0 0 1 1 1 X^2 1 1 X^2+X 1 1 X^3+X^2 X^2+X 1 1 1 0 X^3+X^2 1 X^2 X X 1 1 X^3+X^2 0 1 1 1 1 X^3+X X^3 1 X X^3+X 1 X^3 X 1 1 X^3+X^2+X 1 1 1 X^3+X^2 1 X^2 1 X^3 X^2+X X^3+X^2+X 1 X^3+X 1 0 1 0 0 0 X^3+1 X^3+1 1 X^3+X^2+X X^3+X X^3+X^2+X X+1 X^3+X^2+X+1 1 1 X^2+1 0 X^3 X X^2+X X^3+X^2+1 1 X^2+X 1 X^2+X+1 X^3+X^2+X+1 1 1 X^2 X+1 X^3+X X^3+X^2 1 0 X^2+X+1 1 X^3+X 1 1 1 X X^3+X X X^2+X X^3+X+1 X X^3+X^2+X X^2 1 X 1 1 X^3+X^2 X^3+X^2+X 1 X^3 0 0 1 0 1 1 X^2 X^2+1 0 X^3+1 1 X^2+1 X^2+X X^3+X^2+X+1 X^3 X^2 1 X 1 1 1 X 0 X^2+1 X^3+X^2+X 1 X^2+X X^2+X+1 X^3 X^3+X^2+1 X+1 X^3+X^2+X X^3+X^2+X+1 X^3+X X^3+X^2+1 X^3+X^2+1 1 X^3+X 0 X^2 X^2 X^3+X^2+1 1 0 X^3+X^2+X+1 1 1 X^2+1 X^2+X X^3 X^3+X 0 X^2+X X^3 1 X 0 0 0 1 1 X^2 X^2+1 1 X^2+X+1 X^3+X X^2+1 X^2+1 X^2+X X^3+X^2+X X^2+1 X^2+X+1 X^3+X^2+X+1 X^3+1 X^3+X^2+X+1 0 X^3+1 X+1 1 X^2+X 0 X X^3+X^2 1 X^3+X+1 0 X^2 X^3+X X^3+X^2+X+1 1 X+1 X^3+X+1 X^3+X+1 X^3+1 X^3+X+1 X^3+X+1 X^3+1 X^3+X^2+1 X^3 X^3 X^2+X+1 X^3+X+1 X^3 X^3+X X^2 1 X^2+1 X^3+X^2 1 0 X^2 X 0 0 0 0 X^3+X^2 0 X^3+X^2 0 X^3 X^3 X^3 X^3 X^3 X^3 0 0 X^3 0 0 X^3 X^3 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^3+X^2 X^2 X^2 X^3+X^2 X^2 0 0 X^3+X^2 X^2 X^3+X^2 X^2 X^3+X^2 X^3+X^2 X^3 X^2 X^3+X^2 0 X^3+X^2 X^3 X^3 X^2 X^3+X^2 X^3 0 X^3 X^3 X^3+X^2 generates a code of length 56 over Z2[X]/(X^4) who´s minimum homogenous weight is 48. Homogenous weight enumerator: w(x)=1x^0+229x^48+1274x^49+3647x^50+6778x^51+12843x^52+19588x^53+29525x^54+36548x^55+40462x^56+36630x^57+30838x^58+20088x^59+12681x^60+6258x^61+2853x^62+1150x^63+458x^64+160x^65+73x^66+26x^67+14x^68+10x^69+8x^70+2x^71 The gray image is a linear code over GF(2) with n=448, k=18 and d=192. This code was found by Heurico 1.16 in 441 seconds.